In geometry, the **Tammes problem** is a problem in packing a given number of circles on the surface of a sphere such that the minimum distance between circles is maximized. It is named after a Dutch botanist who posed the problem in 1930 while studying the distribution of pores on pollen grains. It can be viewed as a particular special case of the generalized Thomson problem.

## See also[edit]

## Bibliography[edit]

- Journal articles

- Tammes PML (1930). "On the origin of number and arrangement of the places of exit on pollen grains".
*Diss. Groningen*. - Tarnai T; Gáspár Zs (1987). "Multi-symmetric close packings of equal spheres on the spherical surface".
*Acta Crystallographica*.**A43**: 612–616. doi:10.1107/S0108767387098842. - Erber T, Hockney GM (1991). "Equilibrium configurations of
*N*equal charges on a sphere" (PDF).*Journal of Physics A: Mathematical and General*.**24**: Ll369–Ll377. Bibcode:1991JPhA...24L1369E. doi:10.1088/0305-4470/24/23/008. - Melissen JBM (1998). "How Different Can Colours Be? Maximum Separation of Points on a Spherical Octant".
*Proceedings of the Royal Society A*.**454**(1973): 1499–1508. Bibcode:1998RSPSA.454.1499M. doi:10.1098/rspa.1998.0218. - Bruinsma RF, Gelbart WM, Reguera D, Rudnick J, Zandi R (2003). "Viral Self-Assembly as a Thermodynamic Process" (PDF).
*Physical Review Letters*.**90**(24): 248101–1–248101–4. arXiv:cond-mat/0211390. Bibcode:2003PhRvL..90x8101B. doi:10.1103/PhysRevLett.90.248101. Archived from the original (PDF) on 2007-09-15.

- Books

- Aste T, Weaire DL (2000).
*The Pursuit of Perfect Packing*. Taylor and Francis. pp. 108–110. ISBN 978-0-7503-0648-5. - Wells D (1991).
*The Penguin Dictionary of Curious and Interesting Geometry*. New York: Penguin Books. p. 31. ISBN 0-14-011813-6.