## The Mathematics Portal

**Mathematics** is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

## Selected article -

Leonhard Euler Image credit: Emanuel Handmann |

**Leonhard Euler** (pronounced oiler; IPA /ˈɔɪlər/) (April 15, 1707 Basel, Switzerland - September 18, 1783 St Petersburg, Russia) was a Swiss mathematician and physicist. He is considered to be the dominant mathematician of the 18th century and one of the greatest mathematicians of all time; he is certainly among the most prolific, with collected works filling over 70 volumes.

Euler developed many important concepts and proved numerous lasting theorems in diverse areas of mathematics, from calculus to number theory to topology. In the course of this work, he introduced many of modern mathematical terminologies, defining the concept of a *function*, and its notation, such as *sin*, *cos*, and *tan* for the trigonometric functions.

View all selected articles | Read More... |

## Selected image -

This is a hand-drawn graph of the absolute value (or modulus) of the **gamma function** on the complex plane, as published in the 1909 book *Tables of Higher Functions*, by Eugene Jahnke and Fritz Emde. Such three-dimensional graphs of complicated functions were rare before the advent of high-resolution computer graphics (even today, tables of values are used in many contexts to look up function values instead of consulting graphs directly). Published even before applications for the complex gamma function were discovered in theoretical physics in the 1930s, Jahnke and Emde's graph "acquired an almost iconic status", according to physicist Michael Berry. See a similar computer-generated image for comparison. When restricted to positive integers, the gamma function generates the factorials through the relation Γ(*n*) = (*n* − 1)!, which is the product of all positive integers from *n* − 1 down to 1 (0! is defined to be equal to 1). For real and complex numbers, the function is defined by the improper integral . This integral diverges when *t* is a negative integer, which is causing the spikes in the left half of the graph (these are simple poles of the function, where its values increase to infinity, analogous to asymptotes in two-dimensional graphs). The gamma function has applications in quantum physics, astrophysics, and fluid dynamics, as well as in number theory and probability.

## Did you know -

- ...that it is possible to stack identical dominoes off the edge of a table to create an arbitrarily large overhang?
- ...that in graph theory, a pseudoforest can contain trees and pseudotrees, but cannot contain any butterflies, diamonds, handcuffs, or bicycles?
- ...that it is not possible to configure two mutually inscribed quadrilaterals in the Euclidean plane, but the Möbius–Kantor graph describes a solution in the complex projective plane?
- ...that the six permutations of the vector (1,2,3) form a hexagon in 3D space, the 24 permutations of (1,2,3,4) form a truncated octahedron in four dimensions, and both are examples of permutohedra?
- ...that the Rule 184 cellular automaton can simultaneously model the behavior of cars moving in traffic, the accumulation of particles on a surface, and particle-antiparticle annihilation reactions?
- ...that a cyclic cellular automaton is a system of simple mathematical rules that can generate complex patterns mixing random chaos, blocks of color, and spirals?

*Showing 7 items out of 75*

## WikiProjects

The **Mathematics WikiProject** is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's **talk page**.

**Project pages**

**Essays**

**Subprojects**

**Related projects**

## Things you can do

## Subcategories

Algebra | Arithmetic | Analysis | Complex analysis | Applied mathematics | Calculus | Category theory | Chaos theory | Combinatorics | Dynamic systems | Fractals | Game theory | Geometry | Algebraic geometry | Graph theory | Group theory | Linear algebra | Mathematical logic | Model theory | Multi-dimensional geometry | Number theory | Numerical analysis | Optimization | Order theory | Probability and statistics | Set theory | Statistics | Topology | Algebraic topology | Trigonometry | Linear programming

Mathematics (books) | History of mathematics | Mathematicians | Awards | Education | Literature | Notation | Organizations | Theorems | Proofs | Unsolved problems

## Topics in mathematics

General | Foundations | Number theory | Discrete mathematics |
---|---|---|---|

| |||

Algebra | Analysis | Geometry and topology | Applied mathematics |

## Index of mathematics articles

ARTICLE INDEX: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) |

MATHEMATICIANS: | A B C D E F G H I J K L M N O P Q R S T U V W X Y Z |

## Related portals

## In other Wikimedia projects