In electronics, control systems engineering, and statistics, the **frequency domain** refers to the analysis of mathematical functions or signals with respect to frequency, rather than time.^{[1]} Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-domain graph shows how much of the signal lies within each given frequency band over a range of frequencies. A frequency-domain representation can also include information on the phase shift that must be applied to each sinusoid in order to be able to recombine the frequency components to recover the original time signal.

A given function or signal can be converted between the time and frequency domains with a pair of mathematical operators called transforms. An example is the Fourier transform, which converts a time function into a sum or integral of sine waves of different frequencies, each of which represents a frequency component. The "spectrum" of frequency components is the frequency-domain representation of the signal. The inverse Fourier transform converts the frequency-domain function back to the time function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain.

Some specialized signal processing techniques use transforms that result in a joint time–frequency domain, with the instantaneous frequency being a key link between the time domain and the frequency domain.

## Contents

## Advantages[edit]

One of the main reasons for using a frequency-domain representation of a problem is to simplify the mathematical analysis. For mathematical systems governed by linear differential equations, a very important class of systems with many real-world applications, converting the description of the system from the time domain to a frequency domain converts the differential equations to algebraic equations, which are much easier to solve.

In addition, looking at a system from the point of view of frequency can often give an intuitive understanding of the qualitative behavior of the system, and a revealing scientific nomenclature has grown up to describe it, characterizing the behavior of physical systems to time varying inputs using terms such as bandwidth, frequency response, gain, phase shift, resonant frequencies, time constant, resonance width, damping factor, Q factor, harmonics, spectrum, power spectral density, eigenvalues, poles, and zeros.

An example of a field in which frequency-domain analysis gives a better understanding than time domain is music; the theory of operation of musical instruments and the musical notation used to record and discuss pieces of music is implicitly based on the breaking down of complex sounds into their separate component frequencies (musical notes).

## Magnitude and phase[edit]

In using the Laplace, Z-, or Fourier transforms, a signal is described by a complex function of frequency: the component of the signal at any given frequency is given by a complex number. The modulus of the number is the amplitude of that component, and the argument is the relative phase of the wave. For example, using the Fourier transform, a sound wave, such as human speech, can be broken down into its component tones of different frequencies, each represented by a sine wave of a different amplitude and phase. The response of a system, as a function of frequency, can also be described by a complex function. In many applications, phase information is not important. By discarding the phase information, it is possible to simplify the information in a frequency-domain representation to generate a frequency spectrum or spectral density. A spectrum analyzer is a device that displays the spectrum, while the time-domain signal can be seen on an oscilloscope.

## Types[edit]

Although "*the*" frequency domain is spoken of in the singular, there are a number of different mathematical transforms which are used to analyze time-domain functions and are referred to as "frequency domain" methods. These are the most common transforms, and the fields in which they are used:

- Fourier series – repetitive signals, oscillating systems.
- Fourier transform – nonrepetitive signals, transients.
- Laplace transform – electronic circuits and control systems.
- Z transform – discrete-time signals, digital signal processing.
- Wavelet transform — image analysis, data compression.

More generally, one can speak of the **transform domain** with respect to any transform. The above transforms can be interpreted as capturing some form of frequency, and hence the transform domain is referred to as a frequency domain.

## Discrete frequency domain[edit]

The Fourier transform of a periodic signal has energy only at a base frequency and its harmonics. Another way of saying this is that a periodic signal can be analyzed using a discrete frequency domain. Dually, a discrete-time signal gives rise to a periodic frequency spectrum. Combining these two, if we start with a time signal which is both discrete and periodic, we get a frequency spectrum which is also both discrete and periodic. This is the usual context for a discrete Fourier transform.

## History of term[edit]

The use of the terms "frequency domain" and "time domain" arose in communication engineering in the 1950s and early 1960s, with "frequency domain" appearing in 1953.^{[2]} See time domain: origin of term for details.^{[3]}

## See also[edit]

## References[edit]

**^**Broughton, S. A.; Bryan, K. (2008).*Discrete Fourier Analysis and Wavelets: Applications to Signal and Image Processing*. New York: Wiley. p. 72.**^**Zadeh, L. A. (1953), "Theory of Filtering",*Journal of the Society for Industrial and Applied Mathematics*,**1**: 35–51, doi:10.1137/0101003**^**Earliest Known Uses of Some of the Words of Mathematics (T), Jeff Miller, March 25, 2009

## Further reading[edit]

- Boashash, B. (Sep 1988). "Note on the Use of the Wigner Distribution for Time Frequency Signal Analysis" (PDF).
*IEEE Transactions on Acoustics, Speech, and Signal Processing*.**36**(9): 1518–1521. doi:10.1109/29.90380.. - Boashash, B. (April 1992). "Estimating and Interpreting the Instantaneous Frequency of a Signal-Part I: Fundamentals".
*Proceedings of the IEEE*.**80**(4): 519–538. doi:10.1109/5.135376..